
Search for the E0 Transition from the Deformed 0₂⁺ State in ³⁰Mg [◊]

W. Schwerdtfeger, L.M. Fraile ^{a,b}, D. Habs, T. Kröll, R. Krücken, H. Mach ^c, T. Morgan, O. Schaile, M. Sewtz, O. Tengblad ^b, P.G. Thirolf, and K. Wimmer

^a ISOLDE, CERN, Geneva, Switzerland ^b Instituto de Estructura de la Materia (CSIC), Madrid, Spain ^c Department of Radiation Sciences (ISV), Uppsala University, Uppsala, Sweden

A shape coexistence of spherical and deformed 0⁺ states is predicted to exist around the "island of inversion" in neutron-rich Mg isotopes. While the closed-shell nucleus 32 Mg exhibits a superdeformed ground state ($\beta \sim 0.51$), the ground state of ³⁰Mg is much less deformed, while the (deformed) excited 0⁺ state is predicted by theory between 1.7-2 MeV [1] but has not yet been observed experimentally. However, recent experimental findings create confidence that the experimental identification of shape coexistence in ³⁰Mg is within reach. Resulting from fast timing γ -spectroscopy studies [2] the 1789 keV level in 30 Mg emerged as a strong candidate for the deformed first excited 0⁺ state due to its long lifetime of 3.9 ns and the absence of a ground state γ transition, as can be seen in the level scheme of ³⁰Mg shown in Fig. 1. Moreover, from an inbalance of the populating and deexciting γ intensities a potentially strong E0 decay branch (up to $\sim 4\%$) could be expected from the 1789 keV level. This triggered our search for the deformed 0_2^+ state in 30 Mg via conversion electron spectroscopy within the framework of the ISOLDE IS414 collaboration.

<u>Fig. 1</u>: Level scheme of $^{30}{\rm Mg}.$ New γ transitions found by [2] are marked in thicker lines.

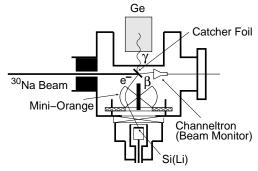


Fig. 2: Sketch of the experimental setup used at ISOLDE

The experimental setup is shown in Fig. 2. The radioactive low energy beam from the HRS target is stopped in a 0.1 mm thick Al-foil. In order to identify the beam com-

position γ -rays following the β -decay were detected using a Ge-detector. A channeltron served as a beam monitor.

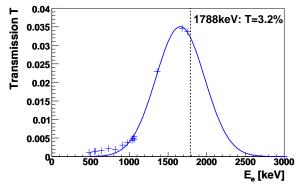
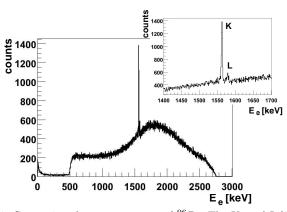
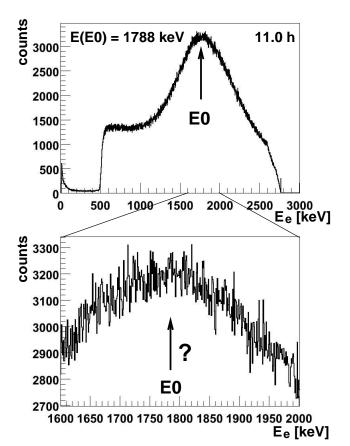



Fig. 3: Transmission curve of the Mini-Orange spectrometer consisting of 8 wedge-shaped permanent magnets. The transmission maximum is 3.5% around 1700 keV close to the transition energy in $^{30}{\rm Mg}$.


In order to suppress the β -decay background and to increase the solid angle of the detector a Mini-Orange spectrometer (MOS) [3] was used. It consists of 8 wedge-shaped permanent magnets arranged around a central Pb absorber resulting in a toroidal magnetic field of B = 160 mT and a Si(Li)-detector operated at liquid N₂ temperature with ~ 4 keV resolution. The transmission curve of the MOS was optimized for the expected E0 transition energy of 1788 keV, resulting in a detection efficiency of 3.2% at this energy, as can be seen from Fig. 3.

<u>Fig. 4</u>: Conversion electron spectrum of 96 Zr. The K- and L-line of the E0 decay are clearly visible on top of the β background folded with the transmission curve.

In order to prove the feasibility of this measurement the known E0 transition (E=1563 keV, I=1.41% [4]) in $^{96}{\rm Zr}$ was measured for 2.2 h. The results are shown in Fig. 4. The K- and L-transitions are clearly visible on top of the β -decay background folded with the transmission curve. The K/L-ratio (9.4_{theo} [5], ($8.0\pm1.3)_{exp}$) and the clearly identified L-line determine the sensitivity limit of the measurement to be $\leq 0.1\%$.

 $[\]Diamond$ supported by BMBF under contract 06 ML 186I

<u>Fig. 5</u>: Conversion electron spectrum of the A = 30 beam. The β background is folded with the transmission curve. The potential location of the E0 transition in $^{30}{\rm Mg}$ at 1788 keV is indicated.

Fig. 5 displays the accumulated electron spectrum measured in 11.0 h using an A = 30 beam ($I_{\rm ^{30}Na} \sim 650/{\rm s}$). Obviously the spectrum does not exhibit the initially expected strong E0 transition at 1788 keV (indicating discrepancies in the published γ -decay intensities). The spectrum is dominated by background from β -decay electrons folded with the transmission function of the Mini-Orange. However, a closer look at the region of the expected E0 transition energy reveals a lineshape-like agglomeration of intensity, exhibiting a width comparable to the detector resolution, resulting in ca. 400(400) background-subtracted counts.

The monopol matrix element $\rho^2(E0)$ is related to the lifetime $\tau(E0)$ of the 0^+ state via

$$\frac{1}{\tau(\text{E0})} = \rho^2 \cdot (\Omega_K + \Omega_L + \dots + \Omega_{IP}),$$

where Ω_i values are 'electronic' (non-nuclear) factors for K and L conversion and internal pair production. Since with this setup only conversion electrons are measured $\Omega_{\rm K+L} = 1.39 \cdot 10^7/{\rm s}$.

In order to derive an upper limit of the transition strength of the E0 decay in $^{30}{\rm Mg}$ two estimates of the monopole matrix element ρ^2 based on experimental results can be given. The equations for the estimates are taken from [6]. The first one is based on an E0 measurement in $^{24}{\rm Mg}$ ($\rho^2({\rm E0}) = 0.305(40)$). For light nuclei one observes an $A^{-2/3}$ scaling of ρ^2 :

$$\rho^2 = 0.5A^{-2/3}$$

Using this scaling we obtain a first estimate for the E0 transition in 30 Mg:

$$\rho_{est.1}^2(^{30}\text{Mg,E0}) = 0.26.$$

A second estimate can be obtained from the overlap of the wave functions of the deformed and the spherical potential minima of the 0^+ states in a simple two-level model. The mixing amplitude a characterizes the mixing of the spherical ground state and the deformed excited state:

$$|0_g^+\rangle = a|0_{\rm sph}^+\rangle + \sqrt{1 - a^2}|0_{\rm def}^+\rangle$$

$$|0_{\rm exc}^{+}\rangle = -\sqrt{1 - a^2}|0_{\rm sph}^{+}\rangle + a|0_{\rm def}^{+}\rangle$$

Knowing the mixing amplitude a and the deformations β_1 and β_2 , ρ^2 can be calculated:

$$\rho^2(E0) = (\frac{3}{4\pi}Z)^2 \cdot a^2 \cdot (1 - a^2) \cdot (\beta_1^2 - \beta_2^2)^2.$$

The deformation of the less deformed 0_1^+ ground state of $^{30}{\rm Mg}$ was measured to be $\beta_2=0.37$ [7]. For the deformation of the excited 0_2^+ state of $^{30}{\rm Mg}$ the measured deformation of the ground state of $^{32}{\rm Mg}$ ($\beta_1=0.51$) can be assumed. Since even for larger mixing the dependence on a is not very strong, $a^2=0.2$ can be safely assumed, resulting in

$$\rho_{est.2}^2(^{30}\text{Mg,E0}) = 0.02.$$

A knowledge of the mixing amplitude a is of critical importance for a consistent interpretation of many experimental observables $(B(E2), \langle r^2 \rangle, \text{ nuclear deformation})$. Note that the (rather large) ground state deformation in ^{30}Mg ($\beta \sim 0.37$) was derived model-dependent from the measured B(E2) value, while a much more spherical intrinsic deformation is expected. Therefore the above given second estimate for $\rho^2(E0)$ may significantly underestimate the intrinsic configuration.

However, in order to derive conservative estimates for the expected monopole strength in $^{30}{\rm Mg}$ the two approaches described above may be used, resulting in a range of ρ^2 values where the experimental identification can be expected.

Focusing in our experiment on the detection of conversion electrons, the above estimates for the monopole strength ρ^2 translate into an expected intensity of the E0 transition of $I_{est_1}(\text{E0}) \sim 0.1\%$ and $I_{est_2}(\text{E0}) \sim 0.063\%$, respectively.

Compared to our present sensitivity of $I \geq 0.1\%$ it is evident that already a modest increase of sensitivity is required to allow for the first identification of the E0 decay from the deformed first excited 0^+ state in $^{30}{\rm Mg}$. Nevertheless an improved experimental setup is in preparation which will allow for significantly increased sensitivity by about a factor of ≥ 750 via a coincidence measurement of E0 decay electrons and β -decay background. Thus the presently dominating β background will be drastically suppressed and even a weak E0 branch will be clearly within experimental reach.

References

- [1] R. Rodriguez-Guzman et al., Nucl. Phys. A709 (2002) 201
- 2] H. Mach et al., Eur.Phys. J. **A25** (2005) suppl.1, 105
- [3] J.van Klinken and K. Wisshak, Nucl. Instr. Meth. 98 (1972) 1
- [4] H. Mach et al., Phys. Rev. C41 (1990) 226
- [5] E.L. Church and J. Weneser, Phys. Rev. **103** (1956) 1035
- [6] J.L. Wood, E.F. Zganjar, C. de Coster and K. Heyde, Nucl. Phys. A651 (1999) 323
- [7] O. Niedermaier et al., Phys. Rev. Lett. **94** (2005) 172501