## Low-Level Structure of <sup>70</sup>Ge from Lifetime and g-Factor Measurements Following $\alpha$ -Transfer to a <sup>66</sup>Zn Ion Beam $\diamond$

J. Leske <sup>a</sup>, K.-H. Speidel <sup>a</sup>, S. Schielke <sup>a</sup>, J. Gerber <sup>b</sup>, P. Maier-Komor, S.J.Q. Robinson <sup>c</sup>, A. Escuderos <sup>d</sup>, Y.Y. Sharon <sup>d</sup>, and L. Zamick <sup>d</sup> <sup>a</sup> Helmholtz-Institut für Strahlen- und Kernphysik, Univ. Bonn <sup>b</sup> Institut de Recherches Subatomiques, F-67037 Strasbourg, France <sup>c</sup> Geology and Physics Dept., Univ. of Southern Indiana, Evansville, IN 47712, USA <sup>d</sup> Department of Physics & Astronomy, Rutgers Univ., New Brunswick, N.J. 08903, USA

The g factor of the  $2_1^+$  state in  $^{70}$ Ge has been remeasured and the lifetimes of the  $2_1^+$ ,  $2_2^+$ ,  $4_1^+$  and the  $3_1^-$  states were redetermined using the techniques of transient magnetic fields and Doppler-Shift-Attenuation, respectively [1]. The states of interest were populated in an  $\alpha$ -transfer reaction to a beam of 180  $\mathrm{MeV}^{-66}\mathrm{Zn}$  ions in collisions with natural carbon. The multilayered target consisted of carbon deposited on Gd backed by a Cu layer in which the excited <sup>70</sup>Ge nuclei were stopped. The isotopically pure <sup>66</sup>Zn ion beam was provided in sufficient intensity by the Munich tandem accelerator. The de-excitation  $\gamma$  rays were detected by four NaI(Tl) scintillators and a Ge detector in coincidence with the  $\alpha$  particles emitted in the decay of the residual <sup>8</sup>Be nuclei which were registered in a 0° Si detector (see also Fig. 1). A Ta foil between the particle detector and the target served as a beam stopper. The Ge detector was placed at 0° for monitoring the Dopplerbroadened lineshapes reflecting the nuclear lifetimes. The g factor results and the B(E2) values deduced from the measured lifetimes were compared with large-scale full fpshell model calculations (Table 1). These were carried with the computer programs OXBASH [2] and ANTOINE [3] using the most commonly applied effective interactions for fp shell nuclei like FPD6 [4] and GXPF1 [5]. No single interaction could account for the complete low-energy structure of <sup>70</sup>Ge, quite in contrast to similar results for <sup>68</sup>Ge [6]. Another important result of the analysis of the  $2_1^+$  precession was that the g factor of the feeding  $4_1^+$  state might be similar to the measured g value of isotonic  $^{68}$ Zn which surprisingly has a negative sign.

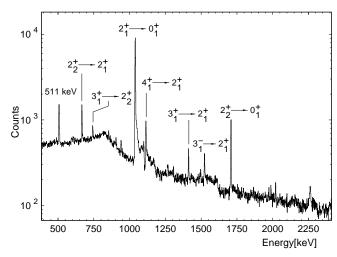



Fig. 1:  $\gamma$ -coincidence spectrum of the  $0^{\circ}$  Ge detector. The assigned  $\overline{\gamma}$  lines refer to the level scheme of  $^{70}$ Ge and the Doppler-broadened lineshapes reflect the nuclear lifetimes.

## References

- K.-H. Speidel et al., Prog. Part. Nucl. Phys. 49 (2002) 91
- A. Etchegoyen et al., MSU report 1985 (unpublished)
- E. Caurier, IRES, Strasbourg, 1989-2004
- W.A. Richter et al., Nucl. Phys. A 253 (1991) 325
  M. Honma et al., Phys. Rev. C 65 (2002) 061301(R)
  J. Leske et al., Phys. Rev. C 71 (2005) 044316
- N.J. Stone, At. Data Nucl. Data Tables 90 (2005) 75

| Quantity                         | Experimental                     | KB3                | FPD6             | GXPF1            | GXPF1A          |
|----------------------------------|----------------------------------|--------------------|------------------|------------------|-----------------|
| $E(2_1^+)[\text{MeV}]$           | 1.039                            | 1.470              | 1.050            | 1.337            | 1.097           |
| $E(2_2^+)[{ m MeV}]$             | 1.707                            | 2.745              | 2.229            | 2.387            | 1.976           |
| $E(0_2^+)[{ m MeV}]$             | 1.212                            | 3.926              | 2.416            | 2.301            | 1.909           |
| $E(2_3^+)[\mathrm{MeV}]$         | 2.156                            | 4.127              | 2.745            | 2.661            | 2.339           |
| $E(4_1^+)[\mathrm{MeV}]$         | 2.153                            | 2.413              | 2.218            | 2.256            | 2.093           |
| $g(2_1^+) \\ g(2_2^+)$           | $+0.47(3)^a  +0.43(12)  +0.4(6)$ | $+0.528 \\ +0.678$ | +0.769<br>+0.880 | +0.397<br>+0.745 | +0.343 $+0.896$ |
| $B(E2; 0_1^+ \to 2_1^+)[e^2b^2]$ | 0.179(3)                         | 0.0501             | 0.1776           | 0.0789           | 0.0673          |
| $B(E2; 0_1^+ \to 2_2^+)[e^2b^2]$ | 0.0047(8)                        | 0.0138             | 0.0110           | 0.0022           | 0.0081          |
| $B(E2; 2_1^+ \to 2_2^+)[e^2b^2]$ | 0.118(21)                        | 0.0115             | 0.0394           | 0.0105           | 0.0067          |
| $B(E2; 2_1^+ \to 4_1^+)[e^2b^2]$ | 0.078(14)                        | 0.0135             | 0.0665           | 0.0234           | 0.0216          |

Table 1: Experimental results in comparison to full fp shell model calculations using different effective interactions.

<sup>♦</sup> work supported by DFG and BMBF