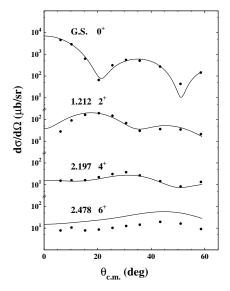
Microscopic DWBA Calculations of the ¹¹²Sn(p,t)¹¹⁰Sn Angular Distributions


B.F. Bayman ^a, A. Covello ^b, A. Gargano ^b, P. Guazzoni ^c, L. Zetta ^c, G. Graw, R. Hertenberger, H.-F. Wirth, and M. Jaskóla ^d

^a School of Physics and Astronomy, University of Minnesota, Minneapolis, U.S.A.
^b Dipartimento di Scienze Fisiche dell'Università and I.N.F.N, I-80126 Napoli, Italy
^c Dipartimento di Fisica dell'Università and I.N.F.N, I-20133 Milano, Italy
^d Soltan Institute for Nuclear Studies, Warsaw, Poland

In order to analyze the (p,t) transitions populating the yrast 0^+ , 2^+ , 4^+ , 6^+ levels of 110 Sn, microscopic DWBA calculations have been performed assuming 100 Sn as a closed core and letting the valence neutrons occupy the five single-particle (sp) orbits in the 50-82 shell. The sp energies [1] have been determined by an analysis of light Sn isotopes [2]. The two-body effective interaction has been derived from the CD-Bonn nucleon-nucleon interaction [3]. The transfer amplitude calculation has been performed in an approach based on a chain calculation across nuclei differing by two in nucleon number: the chain calculation method (CCM) works in the seniority scheme and states up to seniority 4 are included [2]. The transfer amplitudes are defined as:

$$\langle {}^{110}Sn, J, i_q | A_J(j_a j_b) | {}^{112}Sn, g.s. \rangle$$
 (1)

where $A_{\text{-}}J(j_aj_b)$ is the one pair annihilation operator (the two particles are in the SP levels j_a and j_b and are coupled to angular momentum J). In Table 1 the transfer amplitudes are reported for the yrast $0^+, 2^+, 4^+, 6^+$ ($i_g=1$) levels in 110 Sn for each angular momentum J. In Fig. 1 the comparison between experimental data (dots) and the results of the calculations (solid lines) are shown. The same overall normalization, chosen to produce a good fit for the ground state, is used. While the agreement is very good for the $0^+, 2^+, 4^+$ yrast levels of 110 Sn the calculation overpredicts the cross section of the yrast 6^+ state by a factor of about 2.

<u>Fig. 1</u>: Experimental (dots) and theoretical microscopic (solid lines) angular distributions for the transitions to several ¹¹⁰Sn levels

References

- [1] P. Guazzoni et al., Annual report 2004, p. 13
- [2] P. Guazzoni, L. Zetta, A. Covello, A. Gargano, G. Graw, R. Hertenberger, H.-F. Wirth, and M. Jaskóla, Phys.Rev. C69 (2004) 024619
- [3] R. Machleidt, Phys. Rev. C63 (2001) 024001

j_a	j_{b}	$J = 0^{+}$	$J=2^{+}$	$J = 4^{+}$	$J = 6^{+}$
7/2	7/2	-1.5660	0.6472	0.6638	-0.3742
5/2	5/2	-1.0686	0.4022	0.2430	
3/2	3/2	-0.6824	0.0321		
1/2	1/2	-0.5180			
-11/2	-11/2	-0.9400	-0.0139	-0.0161	0.0307
7/2	5/2		-0.1335	-0.3071	0.6255
7/2	3/2		0.0817	0.0525	
7/2	1/2			-0.0766	
5/2	3/2		0.0406	0.0593	
5/2	1/2		0.0941		
3/2	1/2		-0.0265		

Table 1: Transfer amplitudes of yrast J=0⁺, 2⁺, 4⁺, 6⁺ levels of ¹¹⁰Sn