High Resolution Measurement of $^{120}{\rm Sn}(\vec{p},\alpha)^{117}{\rm In}$ Reaction at 23 MeV

P. Guazzoni^a, L. Zetta^a, T. Faestermann, R. Hertenberger, H.-F. Wirth, and M. Jaskóla^b

^a Dipartimento di Fisica dell'Università and I.N.F.N, I-20133 Milano, Italy

^b Soltan Institute for Nuclear Studies, Warsaw, Poland

In order to investigate the existence of homologous states in the mass region A \sim 120 we have measured the $^{120}{\rm Sn}(\vec{p},\alpha)^{117}{\rm In}$ reaction at 23 MeV proton incident energy.

The angular distributions of cross sections $\sigma(\theta)$ and analyzing powers $A_y(\theta)$ of the triton pickup reaction have been measured, from 10^o up to 55^o in two different magnetic field settings, in a high resolution experiment at the Munich MP Tandem accelerator, using the Stern-Gerlach atomic beam source of negative polarized hydrogen ions [1]. A ¹²⁰Sn target (99.6% enriched, $41\mu g/cm^2$ thick) evaporated on a $9\mu g/cm^2$ carbon backing has been used. The outgoing α 's have been analyzed with the Q3D magnetic spectrograph and detected in the light ion focal plane

detector [2]. The intensity of beam current was up to $0.9\mu\text{A}$ and the beam polarization 53%.

A DWBA analysis of $\sigma(\theta)$ and $A_y(\theta)$ has been carried out assuming a semimicroscopic triton pickup mechanism. The calculations in finite range approximation have been performed with the code TWOFNR [3] using a Gaussian proton-triton interaction potential.

In Fig. 1 the comparison between experimental and calculated $\sigma(\theta)$ and $A_y(\theta)$ for the population of several ¹¹⁷In levels is presented.

References

- $[1]\,$ R. Hertenberger $et\,al.,$ Nucl. Instr. and Meth. $\bf A536~(2005)~266$
- [2] H.-F. Wirth et al., Annual report 2000, p. 71
- [3] M. Igarashi, computer code TWOFNR (1977) unpublished.

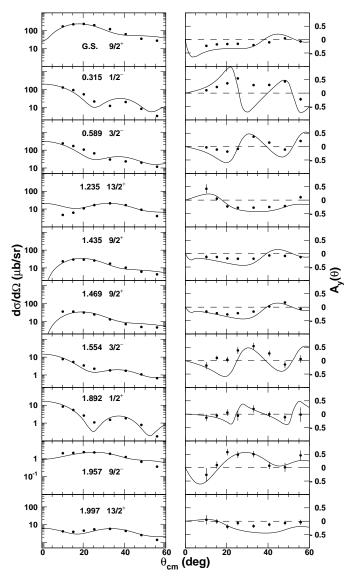


Fig. 1: Comparison between experimental and DWBA results