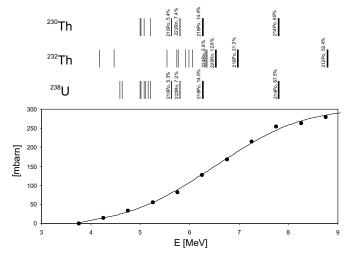
²⁶Al in a Manganese Crust: Indication for a Constant Cosmic Ray Flux during the Last Million Years

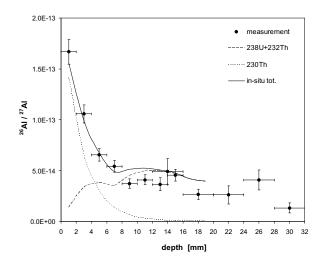
K. Knie, T. Faestermann, E. Herzig, G. Korschinek, M. Poutivtsev, G. Rugel, and A. Wallner

Manganese crusts are growing very slowly (few mm/Myr) on the ground of the oceans. They are mobilizing there elements from the ocean water, i.e. they preserve the ocean water's isotopic composition for millions of years. Therefore, manganese crusts are an important reservoir for paleoceanographic, paleoclimatic and even paleoastronomic studies (see also [1,2]).

Fig. 1: The manganese crust 237KD.


To date layers of a certain depth in the crust radiological methods are used. The radionuclide 10 Be ($T_{1/2}=1.51$ Myr) is produced in the atmosphere by spallation of cosmic rays on nitrogen or oxygen. After a relatively short time it is washed out of the atmosphere, can get dissolved in the ocean and might finally be incorporated into the crust. Assuming a constant 10 Be flux into the crust, one can easily use the 10 Be concentration for dating crust layers of a certain depth: If a layer is deeper and therefore, older, its 10 Be content will be low due to radioactive decay. A similar attempt is made with 53 Mn [1], which is a cosmogenic isotope as well, thus the same assumption of a constant cosmic ray flux has to be made.

However, for the radionuclide 26 Al $(T_{1/2}=0.72 \text{ Myr})$ the production is substantially different. The main fraction is not mobilized from the ocean water, but produced in-situ. α particles from natural radioactivity produce 26 Al in a compound reaction with 23 Na in the crust (see figure 2).


The expected depth (or time) profile of $^{26}{\rm Al}$ depends on the half-life of the α emitter:

- 230 Th $(T_{1/2} = 75 \text{ kyr})$: Relative to the crust's age the half-life is very short. 230 Th from the ocean water is adsorbed at the crust's surface. Here it decays "instantaneously" and produces 26 Al with a certain probability. Similar to 10 Be or 53 Mn, one expects an exponential decrease of the 26 Al concentration with the layer's age (or depth) due to radioactive decay.
- 232 Th $(T_{1/2} = 14 \text{ Gyr})$ and 238 U $(T_{1/2} = 4.5 \text{ Gyr})$: Relative to the crust's age the half-lifes are very long. 26 Al is produced with a constant rate. A saturation level is reached when 26 Al's decay rate equals the production rate.

In figure 3 the results of a depth profile measured with AMS at the GAMS setup is compared with the estimated profile. Using ¹⁰Be ages for the layers [4] an excellent agreement between theory and experiment can be observed. The dating of the crust with the cosmogenic nuclide (¹⁰Be) is fully compatible with the dating by the radiogenic nuclide ²⁶Al. This supports a long term constancy of the galactic cosmic ray flux.

<u>Fig. 2</u>: Cross section for the 23 Na $(\alpha,n)^{26}$ Al reaction [3]. The α energies of the different decay chains are indicated above. The main fraction of 26 Al is produced by only few, high energetic α particles (bold indications).

<u>Fig. 3</u>: Measured $^{26}\mathrm{Al}/^{27}\mathrm{Al}$ ratio versus the depth of the layer. The dotted (dashed) line shows the expected $^{26}\mathrm{Al}$ profile due to production with α particles from the $^{230}\mathrm{Th}$ ($^{232}\mathrm{Th}$ and $^{238}\mathrm{U}$) chain. The dip in the dashed line reflects a reduced $^{232}\mathrm{Th}$ and $^{238}\mathrm{U}$ concentration in the 6-8 mm layer. The sum of both signals is given by the solid line.

References

- [1] M. Poutivtsev et al., Annual report 2004, p. 24
- [2] K. Knie *et al.*, 24
- [3] E.B. Norman et al., Nucl. Phys. A 390 (1982) 561
- [4] M. Segl et al., Nature **309** (1984) 540