Identification of the Slow E3 Transition $^{136 \rm m}{\rm Cs} \to ^{136}{\rm Cs}$ with Conversion Electrons $^{\diamond}$ K. Wimmer, P. Hoff^a, U. Köster^b, T. Kröll, H. Mach^c, T. Morgan, W. Schwerdtfeger, and P.G. Thirolf a University of Oslo, Norway b ILL, Grenoble, France c Uppsala University, Sweden In 136 Cs ($T_{1/2}=13.16$ d) only two states are known, the ground state with spin 5^+ and an isomeric state with a halflife of $T_{1/2}=(19\pm2)$ s [1] and spin 8^- [2]. In order to determine the energy and the multipolarity of the transition, γ rays and conversion electrons from the isomeric level have been measured at the ISOLDE facility at CERN. ^{136m}Cs was produced by 1.4 GeV protons hitting a uranium carbide target. The reaction products were ionized, accelerated to 40 keV and then mass separated in the ISOLDE HRS. The A=136 beam was sent to an aluminum catcher foil. Due to the high production rate of A=136 nuclei one proton pulse per supercycle with a rather low intensity of $3\cdot 10^{12}$ p/pulse was sufficient. $\underline{\text{Fig. 1:}}$ a) $^{136\text{m}}\text{Cs}$ γ ray spectrum measured in 25 min. The 518 keV line is the $8^- \to 5^+$ transition from the isomeric to the ground state of ^{136}Cs . The inset shows the total γ spectrum. The small lines originate from the β decay of ^{136}Cs to ^{136}Ba and natural radioactivity. b) Corresponding conversion electron energy spectrum. Conversion electron lines from the K-shell (binding energy 36 keV), the L-shell (6 keV) and the M-shell (1 keV) can be distinguished. Fig. 1 shows the γ ray and conversion electron spectra measured in 25 min. We determined the excitation energy of the isomeric state to be (518.2 \pm 0.2) keV. In order to determine the multipolarity of the transition, the conversion coefficients for the K, L and M shell have been measured. The γ decay was measured with a Ge detector (photo peak efficiency $\epsilon_{\rm ph}(518~{\rm keV})=0.187~\%$). Simultaneously, conversion electrons were registered in a liquid N₂ cooled Si(Li) detector (distance to target foil 91 mm, efficiency 0.43 %). From the relative intensities of γ and conversion electron radiation the conversion coefficients $\alpha_{K,L,M,...} = I_e^{K,L,M,...}/I_{\gamma}$ can be determined. Since the conversion coefficient depends on the multipolarity of the transition, α can be used to determine the multipolarity of the $8^- \to 5^+$ transition in $^{136}\mathrm{Cs.}$ Table 1 shows the results of the measurement together with theoretical Band-Raman internal conversion coefficients [3] for the two possible multipolarities E3 and M4. Conversion electrons from the M and N shell cannot be resolved due to the small binding energies of the electrons, only the sum of $\alpha_{\rm M}$ and α_N can be measured. Since the conversion coefficients for magnetic M4 transitions are about an order of magnitude larger than for electric E3 transition, the unknown multipolarity of the $8^- \rightarrow 5^+$ transition can easily be deduced. The measured conversion coefficients agree within the error with the calculated values for a E3 transitions, thus we conclude that the 518 keV $8^- \rightarrow 5^+$ transition is of pure E3 character. From the now known multipolarity and halflife the transition strength can be calculated. The long halflife $T_{1/2} = (19 \pm 2)$ s [1] results in a very small $B(E3; 8^- \rightarrow 5^+) = (6.43 \pm 0.68) \cdot 10^{-3} e^2 \text{fm}^6 \text{ value. With}$ only $(5.85\pm0.62)\cdot10^{-6}$ W.u., the 136 mCs \rightarrow 136 Cs transition is by far the slowest E3 transition known in this mass range. In the entire chart of nuclides there are only two known E3 transitions that are slower, ^{177m}Lu and ^{179m2}Hf, which are both K-isomers. There may be other slow E3 transitions which are not observable due to competing faster transitions. In addition to the 518.2 keV ground-state transition, a 413.2 keV γ transition, which is a factor of 800 weaker, and the corresponding conversion electrons have been found. By measuring the conversion coefficients of this line we could conclude that this transition with $\alpha_{\rm K}=0.49\pm0.05$ is a M4 transition. We also observed 105 keV γ rays and coincidences between these and 377 keV K conversion electrons. This suggests that we have found a new level between the isomeric state at 518.2 keV and the ground state. ## References - [1] H.L. Ravn et al., J. inorg. nucl. Chem. 37 (1975) 383 - [2] C. Thibault *et al.*, Nucl. Phys. **A367** (1981) 1 - [3] http://www.nndc.bnl.gov/bricc/ | shell | $E_e [keV]$ | α_{exp} | BRICC | | |-------|-------------|---------------------------------|---------------------------------|---------------------------------| | | | _ | E3 | M4 | | K | 482 | $(1.84 \pm 0.04) \cdot 10^{-2}$ | $(1.89 \pm 0.03) \cdot 10^{-2}$ | $(2.19 \pm 0.03) \cdot 10^{-1}$ | | L | 512 | $(3.73 \pm 0.10) \cdot 10^{-3}$ | $(3.74 \pm 0.05) \cdot 10^{-3}$ | $(4.30 \pm 0.06) \cdot 10^{-2}$ | | M | 517 | | $(7.89 \pm 0.11) \cdot 10^{-4}$ | $(9.22 \pm 0.13) \cdot 10^{-3}$ | | N | 518 | | $(1.64 \pm 0.02) \cdot 10^{-4}$ | $(1.94 \pm 0.03) \cdot 10^{-3}$ | | M + N | 517 | $(9.35 \pm 0.38) \cdot 10^{-4}$ | $(9.53 \pm 0.11) \cdot 10^{-4}$ | $(1.12 \pm 0.01) \cdot 10^{-2}$ | Table 1: Theoretical [3] and experimental conversion coefficients for the 518 keV transition in 136 Cs. Since the binding energies for electrons in the M (1 keV) and N (0.2 keV) shell cannot be resolved in the experiment, only the sum of $\alpha_{\rm M}$ and $\alpha_{\rm N}$ can be measured. [♦] Supported by BMBF under contract 06ML234.