Q3D-Measurement of ²³²Pa and ²³⁰Pa

T. Kotthaus^{*a*}, P. Reiter^{*a*}, F. Finke^{*a*}, H. Hess^{*a*}, M. Kalkühler^{*a*}, A. Wendt^{*a*}, A. Wiens^{*a*},

R. Hertenberger, P.G. Thirolf, T. Morgan, T. Faestermann, and H.-F. Wirth

^a Institut für Kernphysik Köln

In October 2007 a ten days measurement was done at the Q3D-spectrometer to explore the unknown excitation spectra of ²³²Pa and ²³⁰Pa. For this purpose the reactions ²³¹Pa $(\vec{d}, \mathbf{p})^{232}$ Pa and ²³¹Pa $(\vec{d}, \mathbf{t})^{230}$ Pa were used. The polarized deuteron beam impinged with an energy of 22 MeV onto the rare 231 Pa target with a thickness of $140\,\mu{\rm g/cm^2}.$ Due to the odd proton number of the target (Z=91), it was necessary to measure in addition the reactions 230 Th $(\vec{d},p){}^{231}$ Th and 234 U $(\vec{d},t){}^{233}$ U as references. The spectra from these reactions also serve as energy calibration, as the energies of the excited states in 232 Pa and 230 Pa are completely unknown [1,2]. All four reactions were measured with both polarizations of the beam at 9 scattering angles between 7 $^{\circ}$ and 45 $^{\circ}.$ The analysis of the promising data set started with the (d,p) reactions. Figure 1 shows two typical spectra. Already 50 new excited energy states below 800 keV could be identified in 232 Pa. The analysis of the (d,t) data will follow as soon as the (d,p) data analysis is completed.

<u>Fig. 1</u>: Typical spectra from the reactions 230 Th $(\vec{d},p)^{231}$ Th and 231 Pa $(\vec{d},p)^{232}$ Pa. The 231 Th spectrum serves as calibration spectrum for the unknown spectrum of 232 Pa.

The angular distributions of the transfer cross section to specific excitation states and the corresponding analyzing power is extracted from the spectra of the different angles and polarizations. Figure 2 shows typical angular distributions. By comparison of these measured angular distributions to calculated distributions the transfered total angular momentum and orbital angular momentum can be extracted and thus a spin and parity assignment for unknown states will be performed.

Fig. 2: angular distributions for the transfer to four well known states in 231 Th. The curves are the theoretical expected angular distributions for that transfer.

The curves in figure 2 show the calculated angular distributions using the optical parameters from [3]. Optimization of the parameter set, which does not describe the data sufficiently, is on going.

References

- [1] Y.A. Akovali Nuclear Data Sheets for A = 230 **69** (1993) 155-208
- [2] E. Browne Nuclear Data Sheets for A = 232 107 (2006) 2579-2648
- [3] C.M. Perey and F.G. Perey Atomic Data and Nuclear Data Tables 17 (1976) 1-101