Independent Measurement of the Top Quark Mass and the Light- and Bottom-Jet Energy Scales at Hadron Colliders

F. Fiedler

At hadron-colliders, the measurement of the mass m_t of the top quark and the absolute energy scale S for calorimeter jets are closely linked. While the scale S_j for light jets can be calibrated with hadronic W decays in the same ℓ +jets $t\bar{t}$ events used to measure m_t , the main remaining systematic uncertainty on m_t is so far due to differences between S_j and the scale S_b for b jets [1]. A novel measurement technique has now been developed that allows a simultaneous determination of m_t , S_j , S_b , and the jet energy resolution R from ℓ +jets $t\bar{t}$ events [2].

It is assumed that the full calorimeter calibration up to constant scales S_j and S_b has been performed before this method is applied. Three estimators, m_t^{reco} , S_j^{reco} , and S_b^{reco} , are calculated for each selected event. Functions are derived to describe the expected estimator distributions (templates) for any given set of assumed values of m_t , S_j , S_b , and R. A comparison of the measured estimator distributions in the data with these fitted templates then yields the m_t , S_j , S_b , and R values and their uncertainties.

The method has been tested using ℓ +jets $t\bar{t}$ events in 14 TeV pp collisions generated at parton level with ALP-GEN [3]. The energies of the final-state quarks have been smeared according to a Gaussian resolution whose width is set to $\sigma(E) = R\sqrt{E}$ with constant R. All jet energies are multiplied by a factor S_j , and b-jet energies by another factor S_b . Tests have been performed with various (m_t, S_j, S_b, R) parameter sets.

Standard $t\bar{t}$ event selection criteria [2] are applied. In each event, assuming unambiguous *b*-jet identification, the estimator $S_j^{\text{reco}} = \frac{m_{W}^{\text{raw}}}{m_W}$ is calculated from the known *W* mass m_W and the mass m_W^{raw} reconstructed from the smeared light-jet energies. A scan over S_b^{reco} values is performed. Given an assumed value of S_b^{reco} , the reconstructed *b*-quark jet energies and momenta are scaled accordingly, and the missing transverse momentum is adjusted and taken as transverse momentum of the neutrino from the leptonic *W* decay. The longitudinal neutrino momentum p_{ν}^z is then obtained from m_W , and the resulting top quark masses $m_{t,\,\text{lep}}^{\text{reco}}$ and $m_{t,\,\text{had}}^{\text{reco}}$ of the top quarks with the leptonic/hadronic *W* decay are computed. If one finds $m_{t,\,\text{lep}}^{\text{reco}} = m_{t,\,\text{had}}^{\text{reco}}$, then this top quark mass and the corresponding S_b^{reco} value are taken as estimator values for the event. Events are only retained if exactly one solution with $0.5 < S_b^{\text{reco}} < 2.0$ and $150 \,\text{GeV} < m_t^{\text{reco}} < 200 \,\text{GeV}$ is found.

After the preselection, events with a magnitude of the vector sum of *b*-quark jet transverse momenta of less than 50 GeV that yield poor independent information on the top quark mass and *b*-quark jet energy scale are rejected. Finally, the quantity $\Delta^{\text{reco}} := \frac{\partial m_{t,\text{lep}}^{\text{reco}}}{\partial S_b^{\text{reco}}} - \frac{\partial m_{t,\text{had}}^{\text{reco}}}{\partial S_b^{\text{reco}}}$ is obtained during the scan of S_b^{reco} values. Events with

 $\Delta^{\rm reco}$ < 30 GeV have a degraded resolution and are rejected. The resulting $S_b^{\rm reco}$ estimator distributions for various choices of input parameters are shown in Figure 1 as an example.

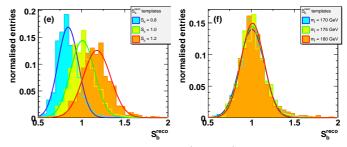
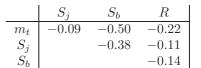
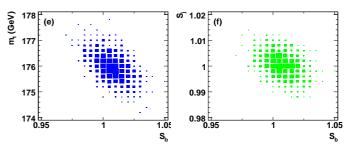




Fig. 1: S_b^{reco} template when varying (left plot) the input S_b value, and (right plot) the input m_t value. The template parameterizations are overlaid.

To test the method, pseudo-experiments are then performed using simulated events for various sets of input parameter values. Figure 2 shows results for the distributions of measured m_t , S_j , and S_b values. The correlation matrix between the four measured parameters is given by:

<u>Fig. 2</u>: Pseudo-experiments: The correlation between m_t and S_b results (left plot), and that between S_j and S_b (right plot).

The parton-level tests of the method have been published [2] as a proof of principle. In the future, the method will be applied to fully simulated ATLAS events, and systematic uncertainties will be investigated.

References

- F. Fiedler, "Precision Measurements of the Top Quark Mass", habilitation thesis, 2007, http://www.etp.physik.unimuenchen.de/dokumente/thesis/habil_ffiedler.pdf
- [2] F. Fiedler, Eur. Phys. J. C 53 (2008) 41 [arXiv:0706.1640 [hepex]].
- [3] M. L. Mangano *et al.*, JHEP **307** (2003) 1