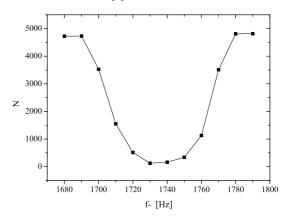

Commissioning of the First Trap of the MLLTRAP System \diamond

V.S. Kolhinen, M. Bussmann, D. Habs, J.B. Neumayr, C. Schürmann, J. Szerypo, and P.G. Thirolf

The MLLTRAP, presently under commissioning and testing at the Maier-Leibnitz-Laboratory (Garching), is a novel double Penning trap facility designed to perform high-precision nuclear mass measurements. For the detailed description of the setup see the annual report 2006 [1].

During 2007 the control and measurement system (CS & MM6) developed at SHIPTRAP (GSI) [2] was implemented and adapted to the local environment. The hardware of the control system consists of a PC computer equipped with CAN-bus, GPIB and a NI timing card. A running control system allowed us to prove the working principle of the first trap (purification trap).

The first step was the trapping test, where ions from the Cs-ion source were captured, cooled in a Helium buffer gas and released from the purification trap, see Fig. 1, which shows the counts detected in the MCP as a function of the time of flight (TOF) which is directly related to the mass of the ions. A trapping time of 0.5 seconds was used here. The pressure in the gas feeding line was $p_{line} = 2 \cdot 10^{-3}$ mbar, which corresponds 10-100 times lower pressure in the trap.



<u>Fig. 1</u>: Counts as a function of TOF from the purification trap to the MCP detector. The trapping time was 0.5 s and the gas pressure in the feeding line was $p_{\text{line}} = 2 \cdot 10^{-3}$ mbar.

Also both magnetron and cyclotron excitations were successfully tested in the purification trap as shown in the figures 2 and 3. They show the magnetron excitation (Fig. 2) and cyclotron excitation (Fig. 3) for ¹³³Cs, respectively. The magnetron excitation is applied to the ring electrode of the trap in dipole mode. This mass-independent excitation moves the ions to larger orbits and subsequently during ejection through a 2 mm diameter exit hole the count rate detected at the MCP behind the trap reduces to a minimum at the value of the resonance frequency.

The cyclotron excitation, $f_c = 1/2\pi \times qB/m$, is mass dependent and is applied in quadrupole mode. F_c recenters all ions into the trap center that correspond to this particular cyclotron frequency. Since the magnetic field is very homogeneous ($\Delta B/B < 0.3 \text{ ppm}$), one can use the cyclotron excitation applied after a magnetron excitation for isobaric mass purification. The mass resolution that could

be achieved in the cyclotron excitation scan displayed in Fig. 3 for 133 Cs is R=32 000, which corresponds to R=150 000 at mass range 58 as achieved with the comparable trap system at JYFLTRAP [3].

<u>Fig. 2</u>: The picture shows counts as function of the magnetron excitation frequency. This mass-independent excitation moves all ions in the trap away from the trap center. The buffer gas pressure in the gas feeding line was $p_{line} = 2 \cdot 10^{-3}$ mbar and the cooling time before excitation was 250 ms. Excitation time was 20 ms at 150 mV amplitude.

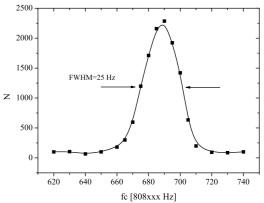


Fig. 3: The picture shows counts as a function of the cyclotron excitation frequency for ¹³³Cs. This mass-dependent excitation moves only those ions back to the trap center that exhibit this particular cyclotron frequeny $f_c = 1/2\pi \times qB/m$. Operational parameters were $p_{\text{line}} = 2 \cdot 10^{-3}$ mbar, $T_{\text{cool}} = 250$ ms, $T(\omega_-) = 20$ ms, $A(\omega_-) = 170$ mV and $T(\omega_c) = 150$ ms, $A(\omega_c) = 151$ mV. This scan corresponds to a mass resolving power of R=32 000.

During the year 2008 a pumping barrier will be implemented between the purification trap and the measurement trap, allowing for a larger pressure difference between the two traps. After this the commissioning of the second trap will follow.

References

- [1] J.B. Neumayr et al., Annual report 2006, p. 81
- [2] M. Block et al., Eur. Phys. J A25 Supp. (2005) 49
- [3] V. S. Kolhinen *et al.*, Nucl. Instr. and Meth. A528 (2004) 776

 $^{^{\}diamond}$ This project has been partly supported by GSI under contract No. LM/HA2 and by EU(IONCATCHER) under contract No. HPRI-CT-2001-50022