Spectroscopic Factors from the Single Neutron Pickup Reaction ${}^{64}Zn(\vec{d},t)$

K.G. Leach^{*a*}, P.E. Garrett^{*a*}, G.C. Ball^{*b*}, G.A. Demand^{*a*}, T. Faestermann, P. Finlay^{*a*}, K.L. Green^{*a*}, R. Hertenberger, R. Krücken, A.A. Phillips^{*a*}, C.S. Sumithrarachchi^{*a*}, C.E. Svensson^{*a*}, S. Triambak^{*a*}, and H.-F. Wirth

^a Department of Physics, University of Guelph, Guelph, ON, N1G 2W1, Canada.
^b TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada.

1. Motivation

A great deal of attention has recently been paid towards high precision superallowed β -decay $\mathcal{F}t$ values. With the availability of extremely high-precision (< 0.1%) experimental data, precision on the individual $\mathcal{F}t$ values are now dominated by the ~ 1% theoretical corrections [1]. This limitation is most evident in heavier superallowed nuclei (e.g.⁶²Ga) where the isospin-symmetry-breaking (ISB) correction calculations become difficult due to a truncation of the model space. With the inclusion of core orbitals in the shell model calculation, recent revisions [1] to the radialoverlap portion, δ_{C2} , of the ISB correction are given by:

$$\delta_{C2} \approx \sum_{\pi,\alpha} \frac{T_f(T_f + 1) + \frac{3}{4} - T_\pi(T_\pi + 1)}{T_f(T_f + 1)} S^{T_\pi}_{\alpha, T_f} \Omega^{\pi}_{\alpha} \qquad (1)$$

where $S_{\alpha,T_f}^{T_{\pi}}$ is the spectroscopic factor for pickup of a single neutron in quantum state α from an *A*-particle state with isospin T_f . The decision as to which core orbitals are important to include are determined from an experimental examination of these spectroscopic factors. In order to help constrain the ⁶²Ga ISB correction calculation, a measurement of the single-neutron pickup reaction ⁶⁴Zn(\vec{d} ,t)⁶³Zn was performed.

2. Experimental Details

The experiment was performed using a 22 MeV polarized deuterium beam from the MP tandem Van de Graaff accelerator and the Stern-Gerlach polarized ion source. The beam was incident on 126 μ g/cm² of ⁶⁴Zn with a 13 μ g/cm² carbon backing. Using the Q3D magnetic spectrograph, and a cathode-strip focal-plane detector, outgoing tritons were analyzed at 9 angles between 10° and 60°. Five momentum settings of the spectrograph were taken at each angle to cover excitation energies of up to ~6 MeV, with both polarizations.

<u>Fig. 1:</u> 63 Zn level population in the lowest momentum setting from the 64 Zn(\vec{d} ,t) transfer at 15°.

Deuteron scattering measurements were also taken in 5° increments from 15° to 90° to validate the deuteron optical model parameters (OMPs).

Fig. 2: The experimental analyzing power (left), and angular distribution (right) for 22 MeV deuteron scattering from a 64 Zn target.

3. Preliminary Results

Since we require accurate DWBA calculations to determine spectroscopic factors, we are using the data in Fig. 2 to construct a new set of deuteron OMPs. This process is currently underway. Particularly advantageous for this are the analyzing powers, which are very sensitive to the spin-orbit interaction.

Fig. 3: Angular distributions for the lowest momentum setting.

Angular distributions and analyzing powers for the ${}^{64}\text{Zn}(\vec{d},t)$ transfer have been constructed for three of the five momentum settings, and the analysis of the final two are underway.

References

[1] I.S. Towner and J.C. Hardy, Phys. Rev. C77 (2008) 025501

[♦] This work has been partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).