Spectroscopic Factors from the Single Neutron Pickup Reaction ${ }^{64} \mathbf{Z n}(\overrightarrow{\mathrm{~d}}, \mathrm{t}) \diamond$

K.G. Leach ${ }^{a}$, P.E. Garrett ${ }^{a}$, G.C. Ball ${ }^{b}$, G.A. Demand ${ }^{a}$, T. Faestermann, P. Finlay ${ }^{a}$, K.L. Green ${ }^{a}$, R. Hertenberger, R. Krücken, A.A. Phillips ${ }^{a}$, C.S. Sumithrarachchi ${ }^{a}$, C.E. Svensson ${ }^{a}$, S. Triambak ${ }^{a}$, and H.-F. Wirth

${ }^{a}$ Department of Physics, University of Guelph, Guelph, ON, N1G 2W1, Canada. ${ }^{b}$ TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada.

1. Motivation

A great deal of attention has recently been paid towards high precision superallowed β-decay $\mathcal{F} t$ values. With the availability of extremely high-precision ($<0.1 \%$) experimental data, precision on the individual $\mathcal{F} t$ values are now dominated by the $\sim 1 \%$ theoretical corrections [1]. This limitation is most evident in heavier superallowed nuclei (e.g. ${ }^{62} \mathrm{Ga}$) where the isospin-symmetry-breaking (ISB) correction calculations become difficult due to a truncation of the model space. With the inclusion of core orbitals in the shell model calculation, recent revisions [1] to the radialoverlap portion, $\delta_{C 2}$, of the ISB correction are given by:

$$
\begin{equation*}
\delta_{C 2} \approx \sum_{\pi, \alpha} \frac{T_{f}\left(T_{f}+1\right)+\frac{3}{4}-T_{\pi}\left(T_{\pi}+1\right)}{T_{f}\left(T_{f}+1\right)} S_{\alpha, T_{f}}^{T_{\pi}} \Omega_{\alpha}^{\pi} \tag{1}
\end{equation*}
$$

where $S_{\alpha, T_{f}}^{T_{\pi}}$ is the spectroscopic factor for pickup of a single neutron in quantum state α from an A-particle state with isospin T_{f}. The decision as to which core orbitals are important to include are determined from an experimental examination of these spectroscopic factors. In order to help constrain the ${ }^{62} \mathrm{Ga}$ ISB correction calculation, a measurement of the single-neutron pickup reaction ${ }^{64} \mathrm{Zn}(\overrightarrow{\mathrm{d}}, \mathrm{t})^{63} \mathrm{Zn}$ was performed.

2. Experimental Details

The experiment was performed using a 22 MeV polarized deuterium beam from the MP tandem Van de Graaff accelerator and the Stern-Gerlach polarized ion source. The beam was incident on $126 \mu \mathrm{~g} / \mathrm{cm}^{2}$ of ${ }^{64} \mathrm{Zn}$ with a $13 \mu \mathrm{~g} / \mathrm{cm}^{2}$ carbon backing. Using the Q3D magnetic spectrograph, and a cathode-strip focal-plane detector, outgoing tritons were analyzed at 9 angles between 10° and 60°. Five momentum settings of the spectrograph were taken at each angle to cover excitation energies of up to $\sim 6 \mathrm{MeV}$, with both polarizations.

Fig. 1: ${ }^{63} \mathrm{Zn}$ level population in the lowest momentum setting from the ${ }^{64} \mathrm{Zn}(\overrightarrow{\mathrm{d}}, \mathrm{t})$ transfer at 15°.

Deuteron scattering measurements were also taken in 5° increments from 15° to 90° to validate the deuteron optical model parameters (OMPs).

Fig. 2: The experimental analyzing power (left), and angular distribution (right) for 22 MeV deuteron scattering from a ${ }^{64} \mathrm{Zn}$ target.

3. Preliminary Results

Since we require accurate DWBA calculations to determine spectroscopic factors, we are using the data in Fig. 2 to construct a new set of deuteron OMPs. This process is currently underway. Particularly advantageous for this are the analyzing powers, which are very sensitive to the spin-orbit interaction.

Fig. 3: Angular distributions for the lowest momentum setting.

Angular distributions and analyzing powers for the ${ }^{64} \mathrm{Zn}(\overrightarrow{\mathrm{d}}, \mathrm{t})$ transfer have been constructed for three of the five momentum settings, and the analysis of the final two are underway.

References

[1] I.S. Towner and J.C. Hardy, Phys. Rev. C77 (2008) 025501

[^0]
[^0]: \diamond This work has been partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

