Study of the ${ }^{142} \mathrm{Nd}(\vec{p}, \alpha){ }^{139} \operatorname{Pr}$ Reaction.

P. Guazzoni ${ }^{a}$, L. Zetta ${ }^{a}$, T. Faestermann, R. Hertenberger, H.-F. Wirth, and M. Jaskóla ${ }^{b}$
${ }^{a}$ Dipartimento di Fisica dell'Università and I.N.F.N I20133 Milano Italy
${ }^{b}$ Soltan Institute for Nuclear Studies Warsaw Poland

In order to investigate the existence of ${ }^{140} \mathrm{Pr}$ states homologous to the low excitation energy states of ${ }^{139} \mathrm{Pr}$ and the spectator role of the unpaired neutron $2 f_{7 / 2}$ of the ${ }^{143} \mathrm{Nd}$ target nucleus, the ${ }^{143,142} \mathrm{Nd}(\vec{p}, \alpha)^{140,139} \mathrm{Pr}$ reactions [1,2] have been measured at 23.5 MeV incident proton energy, using the Stern-Gerlach atomic beam source of negative polarized hydrogen ions, in a high resolution measurement.

The angular distributions of cross sections $(\sigma(\theta))$ and analyzing powers $\left(A_{y}(\theta)\right)$ of the triton pickup reaction ${ }^{142} \mathrm{Nd}(\vec{p}, \alpha){ }^{139} \operatorname{Pr}$ have been measured from 10° to 60° in two different magnetic settings of the Q3D magnetic spectrograph.

A DWBA analysis of $\sigma(\theta)$ and $A_{y}(\theta)$ has been carried
out assuming a semimicroscopic pickup mechanism. The calculations in finite range approximation have been performed with the code TWOFNR [3], using a Gaussian proton-triton interaction potential. The optical model parameters are reported in table 1.

The figure presents the comparison between experimental (dots) and calculated (solid lines) $\sigma(\theta)$ and $A_{y}(\theta)$ for the population of several ${ }^{139} \mathrm{Pr}$ levels.

References

[1] P. Guazzoni et al. Annual report 2002, p. 13.
[2] P. Guazzoni et al. Annual report 2002, p. 14.
[3] M. Igarashi, Computer code TWOFNR, (1977).

Table 1:
$\left.\begin{array}{cccc|ccc|ccc|cc|c} & \begin{array}{c}V_{r} \\ (M e V)\end{array} & \begin{array}{c}r_{r} \\ (f m)\end{array} & \begin{array}{c}a_{r} \\ (f m)\end{array} & \begin{array}{c}W_{v} \\ (M e V)\end{array} & \begin{array}{c}r_{v} \\ (f m)\end{array} & \begin{array}{c}a_{v} \\ (f m)\end{array} & \begin{array}{c}W_{d} \\ (M e V)\end{array} & \begin{array}{c}r_{d} \\ (f m)\end{array} & \begin{array}{c}a_{d} \\ (f m)\end{array} & \begin{array}{c}V_{s o} \\ (M e V)\end{array} & \begin{array}{c}r_{s o} \\ (f m)\end{array} & \begin{array}{c}a_{s o} \\ (f m)\end{array}\end{array} \begin{array}{c}r_{c} \\ (f m)\end{array}\right]$

