# Candidates for the $K^{\pi}=1^{+} \frac{5}{2}^{+}[402]_{\pi}-\frac{3}{2}^{+}[402]_{\pi}$ Band in ${ }^{186} \mathbf{O s} \diamond$ 

A.A. Phillips ${ }^{a}$, P.E. Garrett ${ }^{a}$, L. Bettermann ${ }^{b}$, N. Braun ${ }^{b}$, D.G. Burke ${ }^{c}$, G.A. Demand ${ }^{a}$, T. Faestermann, P. Finlay ${ }^{a}$, K.L. Green ${ }^{a}$, R. Hertenberger, R. Krücken, K.G. Leach ${ }^{a}$, M.A. Schumaker ${ }^{a}$, C.E. Svensson ${ }^{a}$, H.-F. Wirth, and J. Wong ${ }^{a}$<br>${ }^{a}$ Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1<br>${ }^{b}$ Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany<br>${ }^{c}$ Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada L8S 4M1

## 1. Introduction

A resolution of the vibrational structure debate of the $K^{\pi}=4_{1}^{+}$bands in Os isotopes may be emerging. The nature of the $4_{3}^{+}$states was argued to be dominantly a single-hexadecapole phonon structure, or a two-phonon $\gamma$ vibration. The hexadecapole view is supported by inelastic scattering results [1] and population in single-proton transfer ( $\mathrm{t}, \alpha$ ) studies [2], while the two-phonon view is supported by $\mathrm{B}(\mathrm{E} 2)$ value measurements and lifetimes $[3,4,5]$. We set out to provide more data for the debate by performing ${ }^{185,187} \mathrm{Re}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{186,188}$ Os reactions, in which we observed a strong population of the $4_{3}^{+}$states that was consistent with recently published Quasiparticle Phonon Model (QPM) calculations [6]. These calculations reveal a dominant hexadecapole component along with a large $\gamma \gamma$ component, providing a unified interpretation of all available data in this conflict. Since the 2007 annual report focused the $4_{3}^{+}$debate, this report will provide an update regarding other results on the structure of ${ }^{186} \mathrm{Os}$.

## 2. Experiment

The $1.2 \mu \mathrm{~A} 30 \mathrm{MeV}{ }^{3} \mathrm{He}$ beams bombarded ${ }^{185,187}$ Re targets mounted on carbon backings, while the Q3D spectrograph was used at 9 angles between $5^{\circ}$ and $50^{\circ}$ to separate the reaction products according to momentum. The position-sensitive proportional counter with cathode-foil readout provided particle identification and energy measurements, with typical energy resolutions ranging from 6.3 keV to 13 keV FWHM. Two momentum bites were employed to examine states up to 3 MeV in excitation energy and known peaks from ${ }^{194,195} \mathrm{Pt}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{195,196} \mathrm{Au}$ allowed identification of Os levels through an energy calibration. The uncertainty in level energies is approximately $1-2 \mathrm{keV}$ resulting from the uncertainty on the peak position combined with the uncertainties in the calibration polynomial.

## 3. Results

Since odd-A targets were used, the observed cross section is a summation over all allowed angular momenta, however, it was found that the $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ angular distributions were well approximated by a single $\ell$ value. The cross sections can be expressed as:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=g^{2} C_{j, \ell}^{2} U^{2}\left|\left\langle I_{i} K_{i} j \Delta K \mid I_{f} K_{f}\right\rangle\right|^{2}\left[N \frac{d \sigma}{d \Omega}(\theta, \ell, j)\right] \tag{1}
\end{equation*}
$$

which includes the Nilsson wave function amplitudes $\left(C_{j, \ell}^{2}\right)$, a pairing factor $\left(U^{2}\right)$, a Clebsch-Gordan coefficient to account for angular momentum selection rules, and distorted wave Born approximation calculations of the angular distribution of a particle being transferred with $j, \ell$
angular momentum. Note that if one $j$-value has a dominant $C_{j, \ell}$ for a rotational band, the population of band members is governed by the size of the Clebsch-Gordan coefficient, therefore a band member search was conducted looking for measured cross-sections which have similar ratios to Clebsch-Gordan coefficients(Table 1). Candidates for $K^{\pi}=1^{+}$bands were found in ${ }^{186} \mathrm{Os}$ and are summarized in Table 2. If it is assumed that the moment of inertia of a $K^{\pi}=1^{+}$band is similar to the ground state band, only states in the first group of Table 2 are candidates for being rotational band members. We propose that the 2321.5(5) keV, 2406.7(6) keV, and 2513.1(11) keV levels be further explored as candidates for the $1,2,3$ members of a $K^{\pi}=1^{+}$band.

| Clebsch-Gordon Coefficients |  |  | Rotational Energy |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\langle\left.\frac{5}{2} \frac{5}{2} \frac{3}{2}-\frac{3}{2} \right\rvert\, I_{f} 1\right\rangle$ |  |  | $I_{f}\left(I_{f}+1\right)$ |  |  |
| $I_{f}$ | CG | $\|\mathrm{CG}\|^{2}$ | Ratio | $-K_{f}\left(K_{f}+1\right)$ | Ratios |
| 1 | 0.707 | 0.500 | 1 | 0 | 0 |
| 2 | 0.598 | 0.357 | 0.714 | 4 | 1 |
| 3 | 0.354 | 0.125 | 0.250 | 10 | 2.5 |
| 4 | 0.134 | 0.018 | 0.036 | 18 | 4.5 |

Table 1: Expected properties of a $K^{\pi}=1^{+}$band from the $\frac{5}{2}^{+}[402]_{\pi}-\frac{3}{2}^{+}[402]_{\pi}$ configuration. The rotational parameter of the ground state band is about 21 keV , so the rotational energies would be approximately $0 \mathrm{keV}, 84 \mathrm{keV}, 210 \mathrm{keV}$, and 378 keV .

| Energy <br> $(\mathrm{keV})$ | $\frac{d \sigma}{d \Omega}$ <br> $(\mu \mathrm{~b} / \mathrm{sr})$ | Ratio | Spacing <br> $(\mathrm{keV})$ | Ratio |
| :---: | :---: | :---: | :---: | :---: |
| $2321.5(5)$ | $15.9(10)$ | 1 | 0 | 0 |
| $2406.7(6)$ | $12.4(8)$ | $0.78(7)$ | $85.2(8)$ | 1 |
| $2513.1(11)$ | $4.4(5)$ | $0.28(4)$ | $191.6(12)$ | $2.25(5)$ |
| $2406.7(6)$ | $12.4(8)$ | 1 | 0 | 0 |
| $2531.3(6)$ | $9.0(10)$ | $0.73(9)$ | $124.6(9)$ | 1 |
| $2659.4(15)$ | $3.5(6)$ | $0.28(5)$ | $252.7(16)$ | $2.03(3)$ |
| $2542.7(8)$ | $13.1(11)$ | 1 | 0 | 0 |
| $2583.0(10)$ | $8.4(7)$ | $0.64(8)$ | $40.3(13)$ | 1 |
| $2659.4(15)$ | $3.5(6)$ | $0.27(5)$ | $116.7(18)$ | $2.90(9)$ |

Table 2: Properties of $K^{\pi}=1^{+}$band member candidates in ${ }^{186} \mathrm{Os}$. The cross section measurements used are at a $40^{\circ}$ deuteron scattering angle. Three separate groups for the $1,2,3$ members are presented, but only the states in the first group are considered to be candidates.

## References

[1] D.G. Burke et al., Phys. Lett. B78 (1978) 48
[2] R.D. Bagnell et al., Phys. Lett. B66 (1977) 129
[3] M. Oshima et al., Nucl. Phys. A557 (1993) 635c
[4] C.Y. Wu et al., Phys. Rev. C64 (2001) 014307
[5] C.Y. Wu and D. Cline, Phys. Lett. B382 (1996) 214
[6] N. Lo Iudice and A.V. Sushkov, Phys. Rev. C78 (2008) 054304

[^0]
[^0]:    $\diamond$ Supported in part by the Natural Sciences and Engineering Research Council of Canada

