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αs Determination via the Differential 2-Jet-Rate at LHC
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Jets are an important component for several physics analy-
ses (QCD, Top-quark, Higgs, SUSY, etc.). The large statis-
tics make analyses with first data at LHC possible. The
presented analysis describes an αs measurement via the
differential 2-jet-rate.
A number of algorithms has been established to reconstruct
jets - each based on different physical and theoretical mo-
tivations. At hadron collider experiments, the so called
Cone-algorithms are in favor. Unfortunately, not all vari-
ants of these algorithms are infrared- and collinearsafe.
The so called kT-jetalgorithms [1] (here in the exclusive
mode) are on the contrary infrared- and collinearsafe. The
assignment of an object to a jet happens via the distance
in momentum space. If the distance between an object k

and an object l dkl = min(p2
Tk, p2

Tl) ∗ R2 is larger than a
given parameter dcut, the clustering process is stopped. In
this way, the dcut-value directly affects the jetmultiplicity
in the final state. This analysis deals with the dcut-values
where the jetmultiplicity flips from 3 to 2 jets (d23).
For the determination of αs processes are needed where
gluons participate, because gluons couple with strength αs

to quarks.
The exclusive 3-jet-rate is defined by

R3 =
σ3Jets

σ2Jets + σ3Jets

,

which is in leading-order (LO) proportional to αs. For
a more exact determination of αs from the 3-jet-rate the
theoretical calculations have to be used in next-to-leading-
order (NLO).
For this analysis the NLO predictions of the program NLO-
Jet++ [2] by Zoltan Nagy with the parton density function
CTEQ6.1 were used to generate inclusive 3 parton produc-
tion.
In NLO the 3-jet-rate becomes

R3(d23) = A(d23) ∗ αs + B(d23) ∗ α2
s.

As the entries of the R3-distribution are correlated, it is
preferable to take the uncorrelated, differential distribu-
tion.
With R2 = 1−R3−R4 the differential 2-jet-rate1 becomes

D23 =
∆R2

∆d23
= −

∆R3

∆d23
=

∆A(d23)

∆d23
∗ αs +

∆B(d23)

∆d23
∗ α2

s.

Fig. 1: d23-distribution in LO (green), NLO (red) and full (black)

Figure 1 shows the d23-distribution in LO (green) and
NLO (red). The shape of the two distributions differ due
to higher terms of αs. Therefore it is possible to determine
αs from the shapes.
In the next step, the d23-distributions were divided in pT -
intervalls of the leading jets, because αs depends on Q2,
which can be approximated by p2

T,leadingjet.

Fig. 2: d23-distribution in LO (green) and NLO (red) in pT -intervalls
of the leading jets

With these distributions (Fig. 2) (notice that the LO-
(green) and NLO-distributions (red) differ in the according
pT -intervalls) it is now possible to determine αs(Q

2):

D23 =
∆A(d23, Q

2)

∆d23
∗ αs(Q

2) +
∆B(d23, Q

2)

∆d23
∗ α2

s(Q
2)

=
1

N
∗

∆N(Q2)

∆d23

where ∆A(d23,Q2)
∆d23

(=LO) and ∆B(d23,Q2)
∆d23

(=NLO) can be

obtained from NLOJet++ and 1
N
∗

∆N(Q2)
∆d23

from measured
data. Fits of the D23-distribution then yield αs.
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1R4 cannot be calculated in NLO with NLOJet++. Hence in experiment regions of phase space should be measured where R4 is negligible.


