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The two-body neutron β-decay into a hydrogen atom and
an electron antineutrino

n → H + ν̄ (1)

is investigated. The hyperfine-state population of the mo-
noenergetic hydrogen atoms( 325.7 eV) yields the neutrino
left-handedness or a possible right-handed admixture and
possible small scalar and tensor contributions to the weak
force [1]- [4]. The constraints on the neutrino helicity and
the scalar and tensor coupling constants of weak interac-
tion can be improved considerably.

Using the through-going beam tube of a high-flux beam
reactor, a background free hydrogen rate of ca. 3 s−1 can
be obtained. In fig. 1 the suggested setup is sketched.

Fig. 1: Sketch of the experimental setup for measuring hydrogen
atoms from neutron bound-β- decay at a high flux beam reactor
through-going beam tube. The axial spin holding magnetic field ~B1

and an axial electric counter field ~E3 for suppressing the neutron β-
decay protons are drawn. The spin filter consists of an axial quan-
tization ~B3 with a Stark mixing transverse electric field ~E1 and an
azimuthal magnetic rf field. After the spin filter there are two trans-
verse laser beams with wavelengths λ1 and λ2, a longitudinal accel-
erating and focussing electric field ~E2 and a bending and focussing
magnetic field ~B4

A small axial ~B field keeps the initial e− and p spin di-
rections of the H atom. The neutron β-decay protons can
be shielded by a small axial counter ~E field. Other charged
and neutral particles and γ rays moving in transverse direc-
tions are suppressed by neutron and γ absorbing orifices on
both sides of the maximum neutron flux. By means of the
MCNP program the neutron and γ flux together with the
particle and photon directions have been calculated for the
FRMII SR6 beam tube. In order to suppress these parti-
cles and photons, the orifices are designed using GEANT4
with the MCNP data as an input. The metastable H(2s)
atoms are analyzed downstream by a Lamb shift source
type spin filter selecting the four hyperfine states.

The remaining state-selected H atoms (e. g., 2s1/2, F =
1, mF = 1) are excited by two CW lasers with λ1(2s →

10p) =379.68 nm and λ2(10p → 27d) = 10.56µm. The
Doppler shifted frequency is given by

ν′ = ν

√

1 − β2

1 + β cos φ
, (2)

where φ is the angle between the H atom and the photon.
For φ = π/2 the second order Doppler shift ν′ = ν

√

1 − β2

results. The relative shift due to the H(2s) velocity β =
0.83 · 10−3 is ∆ν′/ν = β2/2 = −3.44 · 10−7. The relative
width due to the velocity spread dβ = 0.73 · 10−5 because
of the thermal motion of the decaying neutrons is

dν′

ν
= −

β dβ
√

1 − β2
= −6.06 · 10−9 (3)

yielding an absolute width dν′ = −4.785 · 106 s−1 for
ν2s−10p = 7.896 · 1014 s−1 which corresponds to a single
mode laser width. Thus, using the second order Doppler
effect H(2s) atoms with a large velocity spread can be
excited. However, the angular width, within which the
excitation occurs, is very small being dφ = (dν′/ν)/β =
−7.3 · 10−6. The divergence of the H atoms in our ex-
periment, which must correspond to the divergence of the
photons within the laser resonator, is 1000 times larger.
Therefore, the resonator mirrors must be curved.

Fig. 2 shows the Monte Carlo calculated level occupa-
tions for various laser 2 positions. The 2s occupation is
rather constant and high, the 10 p always low. There is a
position, where the 27 d occupation is 45 % which is quite
efficient.

Fig. 2: 2s, 10p and 27d level occupation vs. laser 2 position relative
to laser 1 for thermal decaying neutrons and 7.3 · 10−3 H atom di-
vergence. The power within the resonators is 20 kW and 100 W for
laser 1 and 2, respectively

The H(2s) atoms are subsequently field ionized by the

axial ~E2 field. The resulting protons are accelerated by ~E2
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and are by 90o bent and focussed by a magnet spectrome-
ter( being designed using the beam optics matrix program
GICO and the magnet code OPERA) onto a CsI(Tl) or
silicon drift detector. The β-decay electrons are deflected
by the transverse ~B4 field of the magnet spectrometer
away from the detector.

In a preceding experiment the yield of neutron bound-
β-decay H(2s) atoms will be measured at a high flux beam

reactor through- going beam line by a transverse ~B field (
≈ 10 Gauss, 1 m long, fig. 3) deflecting the charged parti-

cles from the beam tube axis followed by an axial ~E field,
where the H(2s) are quenched resulting in the emission of
Lyman α photons which will be detected perpendicularly
to the axis by a photon detector( LAAPD or solar blind
PM).

Fig. 3: Neutron bound- β- decay H(2S) yield measurement. The

setup contains a transverse magnetic ~B field, two collimators with
diaphragms, an axial electric ~E field and a photon detector

Alternatively, the neutron bound- β- decay H(2S) could
be charge exchanged to H− within an Ar cell( fig. 4).
A possible thermal H− background is suppressed by the
small ~E4 counter field being advantageous compaired to
the Lyman α detection method. The remaining neutron
bound- β- decay H− ions are accelerated by ~E2 and are
by 90o bent and focussed by a magnet spectrometer onto
a detector.

Fig. 4: Neutron bound- β- decay H(2S) yield measured by charge
exchanging into H− using an Ar cell. Thermal H− are suppressed
by a small ~E4counter field. The remaining H− are accelerated by ~E2

followed by a magnet spectrometer and a detector as in fig. 1

In order to study the Lyman α photon detection, an
intense H(2s) source is being set up at the MLL source
laboratory, where the produced H− are stripped within a
N2 cell to protons which are supsequently converted into
H(2s) within a Cs cell. After the Cs cell the H(2s) pass the
apparatus shown in fig. 3. The N2 cell, essentially con-
sisting of a 7 mm inner diameter 200 mm long tube, filled
with 1.6 mbar N2, where the throughgoing H− are charge
exchanged into protons with 40 % efficiency, is shown in
fig. 5.

Fig. 5: Perspective section of the N2 cell for H− stripping into pro-
tons
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