Strangeness Results from HADES \diamond

A. Schmah, E. Epple, and L. Fabbietti

Λ

Λ

1. Study of the $\Lambda(1405)$ resonance

The study of the resonance $\Lambda(1405)$ has recently attracted very much attention, especially for a better understanding of the $\bar{K}N$ interaction and therefore important for a prediction of possible kaonic clusters [1]. The p+p reaction system at 3.5 GeV measured in April 2007 with a statistics of $1.2 \cdot 10^9$ reactions with the HADES-spectrometer are now being analyzed to investigate the feasibility of such a measurement. Simulations were performed to estimate the expected yield of $\Lambda(1405)$ and the corresponding background in the measured data. The following reaction was taken into account:

$$p + p \to \Lambda(1405) + K^+ + p. \tag{1}$$

A cocktail with $6 \cdot 10^6$ events was simulated with the event generator PLUTO [2] and particle tracks have been propagated through the spectrometer with GEANT [3]. The background cocktail consists of 21 reaction channels containing at least a K^+ p pair. The $\Lambda(1405)$ has been reconstructed using the missing mass technique ΔM_{K^+p} . The result of the simulations is shown in Fig.(1) (red shaded histogram). The spectrum shows the hyperons $\Lambda(1116)$ and $\Sigma^0(1192)$ as well as the sum of the $\Lambda(1405)$ and $\Sigma(1385)$. It is clearly visible that this signal of the $\Lambda(1405)$ is on top of a large background and is completely overlapped by the $\Sigma(1385)$ contribution. Therefore it is necessary to do an exclusive analysis to distinguish between the individual components of the hyperon spectrum. A preliminary analysis of the experimental data has also been carried out. The resulting missing mass spectrum is also shown in Fig.(1). The overlay of the experimental and simulated spectra shows a fair agreement. The differences are due to uncertainties of some cross sections in the simulated cocktail.

Fig. 1: Missing mass spectra of K^+ and p for simulated data (red shaded histogram) and from a preliminary analysis of measured data (black histogram).

In order to get a pure $\Lambda(1405)$ signal further analysis steps are necessary. If the following decays are considered:

$$\Lambda(1405) \quad \to \quad \Sigma^- + \pi^+ \to n + \pi^- + \pi^+ \tag{2}$$

$$(1405) \rightarrow \Sigma^+ + \pi^- \rightarrow p + \pi^\circ + \pi^- \tag{3}$$

$$\Lambda(1405) \quad \to \quad \Sigma^+ + \pi^- \to n + \pi^+ + \pi^- \tag{4}$$

$$(1405) \quad \to \quad \Sigma^{\circ} + \pi^{\circ} \to \Lambda(1116) + \gamma + \pi^{\circ}$$

$$\rightarrow \quad p + \pi^- + \gamma + \gamma + \gamma \tag{5}$$

one can see that the $\Sigma^{\circ}\pi^{\circ}$ channel is the best suited to distinguish the $\Lambda(1405)$ from the overlapping $\Sigma(1385)$ resonance. Indeed the $\Sigma(1385)$ decays as well as $\Lambda(1405)$ into $\Sigma\pi$, but due to isospin conservation the decay

$$\Sigma(1385) \to \Sigma^{\circ} \pi^{\circ} \tag{6}$$

is forbidden. This allows to disentangle experimentally the two resonances as already shown in [4].

Including in the simulations the geometrical detector acceptance as well as the efficiency of the trigger and track reconstruction the amount of expected $\Lambda(1405)$ in the decay channel $\Sigma^{\circ}\pi^{\circ}$ has been estimated. In the collected statistics for the p+p at 3.5 GeV reaction we expect about 400 counts for this particular channel. These events are going to be reconstructed in an exclusive analysis.

2. ϕ and K^- production below the NNthreshold in Ar+KCl reactions

An analysis of ϕ and K^- mesons has been performed in the reactions system Ar+KCl at a bombarding energy of 1.756 AGeV. The ϕ meson was reconstructed in the decay channel $\phi \to K^+K^-$. The invariant mass spectrum of K^+ and K^- mesons is displayed in Fig.(2), showing a clear ϕ signal. The ϕ and K^- are produced in the reactions far below the NN-threshold energies which is for both particles around 2.5 GeV. The ϕ/K^- ratio has been deduced from the data and found to be 0.37 ± 0.13 , translating into a fraction of $18 \pm 7\%$ of K^- stemming from ϕ decays. This unexpected high value of K^- mesons coming out from ϕ decays may change the importance of other production channels like the so called strangeness-exchange channel [5].

Fig. 2: Invariant mass spectrum of K^+ - K^- -pairs. The grey shaded are shows the mixed-event background.

References

- [1] Y. Akaishi and T. Yamazaki, Phys. Rev C65 (2002) 044005
- [2] I. Fröhlich *et al.* PoS ACAT (2007) 76
- [3] R. Brun *et al.* CERN report **DD/EE** (1987) 84-1
- [4] I. Zychor *et al.* Phys.Lett. **B660** (2008) 167
- [5] G. Agakishiev *et al.* arXiv:nucl-exp/0902.3487 2009.

 $[\]diamond$ supported by DFG (Exc.-Clust. 153-Universe)