Commissioning of the New Λ Trigger for the FOPI Spectrometer \diamond

M. Berger, L. Fabbietti, O. Hartmann, and R. Münzer

Recently, the search for deeply bound nuclear states with antikaons has attracted large interest. It was recently found [1] that the p+p reaction might be well suited for the production of (K⁻pp) nuclear bound states. We have proposed to perform an exclusive measurement using the FOPI detector [2] exploiting the reaction p+p at 3.5GeV and to build for this purpose a dedicated trigger device. The final state of the $pp \rightarrow (K^-pp)K^+ \rightarrow \Lambda pK^+$ reaction

involves Λ hyperons which can be detected using their decay into p + π^- (64% branching ratio). Thus, the FOPI detector has been extended by a Λ trigger system, in order to enrich events containing Λ candidates.

The scheme of the Λ trigger (SIAVIO – SIlicon Λ Vertexing and Identification Online) is shown in figure 1. It consists of two detector layers downstream of the target with distances such that the bulk part (about 60%) of the produced Λ s decay in between the two layers.

Fig. 1: Schematic view of the trigger concept.

The first layer (SIAVIO A) is a single-sided, 1mm thick annular detector segmented in 32 slices, while the second layer (SIAVIO B) consists of a patch-work of 8 rectangular double-sided, 1 mm thick, $40x60mm^2$ with 1 mm pitch for each side. The event selection is performed requiring online that the hit multiplicity on the second silicon layer is higher (1 or 2 hits more) than the hit multiplicity on the first layer. This operation is taken care by the Mesytec analog electronics that reads out the annular and the n side of the 8 rectangular detectors. The Mesytec shaper provide a trigger signal according to the hit multiplicity on each detector and can be set such to realize the above mentioned trigger condition. The p-side of the rectangular detectors has been read out with an APV-25 chip which allows a compact readout of all the channels. The assembled detector system is shown in figure 2, where the boards on which SIAVIO A and B are hosted and the APV-25 cards are visible.

<u>Fig. 2</u>: Assembled SIAVIO system.

A test has been carried out at GSI to test the performance of the trigger system. A proton beam at 3GeV with an intensity of 10^5 particles/sec has been focused on a plastic target and the full FOPI spectrometer, together with the Λ -trigger, has recorded data under different trigger condition. The main trigger (LVL1) has been set requiring at least one charge particle to cross the FOPI-RPC and the FOPI-PLAWA, the time of flight detectors situated at mid- and forward rapidity in the laboratory reference system respectively. The Λ trigger has been set such to accept events with one or more particle hits on SI Λ VIO A in coincidence with two ore more hits on SI Λ VIO B.

Fig. 3: Offline particle multiplicity of SiAVio A versus the particle multiplicity on SiAVio B.

Figure 3 shows the particle multiplicity obtained via an offline calibration for events which fullfil the Λ trigger condition. One can see how clean the required multiplicity condition is selected by the trigger. In overall a reduction of a factor 14 respect to the LVL1 trigger has been obtained applying the Λ trigger condition.

References

- [1] Yamazaki et al., arXiv:0810.5182v1 nucl-ex.
- [2] http://www.gsi.de/documents/DOC-2007-Mar-168-1.pdf

 $[\]diamond$ Excellence Cluster Universe